Los delfines adaptaron su esperma para poder reproducirse en el mar

Un estudio con participación de investigadores del Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) del CSIC revela que el esperma de los delfines tuvo que adaptarse para permitir su reproducción en el medio marino.

Los delfines adaptaron su esperma para poder reproducirse en el mar. Foto: IStock.
Los delfines adaptaron su esperma para poder reproducirse en el mar. Foto: IStock.

A diferencia de sus parientes terrestres, que usan la glucosa como fuente de energía, los espermatozoides del delfín metabolizan ácidos grasos para permitir su motilidad y adquirir la capacidad de fecundar al óvulo, según se desprende de un trabajo en el que ha participado el Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) del CSIC y que ha aparecido publicado en la revista Current Biology.

Dieta rica en grasa y proteínas

Hace 50 millones de años, cuando algunos herbívoros decidieron volver al mar, tuvieron que evolucionar y cambiar su morfología para adaptarse a la natación. Su metabolismo cambió drásticamente al sustituir la alimentación vegetal por una dieta rica en grasa y proteína, basada el consumo de pescado. Esta transformación contribuyó a la adaptación a las nuevas condiciones de falta de oxígeno durante largos periodos de tiempo.

"Los músculos se adaptaron para utilizar las grasas como fuente energética, mientras que la glucosa se reservó para algunos tejidos específicos como el cerebro”

Hace 50 millones de años, los delfines sustituyeron la alimentación vegetal por una dieta rica en grasa y proteína
Hace 50 millones de años, los delfines sustituyeron la alimentación vegetal por una dieta rica en grasa y proteína. Foto: IStock.

“Al cambiar la dieta de vegetales y polisacáridos de origen vegetal por proteínas y grasa, empezaron a usar los ácidos grasos como sustrato energético. Los músculos se adaptaron para utilizar las grasas como fuente energética, mientras que la glucosa se reservó para algunos tejidos específicos como el cerebro”, explica Alfonso Gutiérrez-Adán, uno de los autores del estudio.

En estas nuevas condiciones, también sus órganos y estrategias reproductivas sufrieron grandes transformaciones. Entre ellas, los delfines perdieron las glándulas seminales productoras del líquido seminal, que nutre a los espermatozoides en su eyaculado, por lo que la fuente energética para poder desplazarse y fecundar el ovocito debía encontrarse acumulada en su interior.

“Hemos descubierto que muchas de las enzimas de la ruta glicolítica, responsable de metabolizar la glucosa en el testículo, están inactivadas en el delfín. Esto se debe a que la vía que utilizan los espermatozoides para producir energía y moverse es la fosforilación oxidativa de lípidos, lo que supone que la especie experimentara una extraordinaria adaptación, imprescindible para reproducirse en las nuevas condiciones marinas”, matiza el científico.

El equipo del INIA CSIC analizó el esperma del delfín.
El equipo del INIA CSIC analizó el esperma del delfín. Foto: IStock.

Para llegar a estas conclusiones, el equipo del INIA-CSIC analizó el esperma del delfín y, en especial, los requerimientos de glucosa o piruvato para el movimiento, así como su motilidad al inactivar la ruta de beta-oxidación mitocondrial de ácidos grasos. También realizaron análisis metabolómicos para comprobar sus diferencias con el esperma de mamíferos terrestres como el toro.

"Muchas de las enzimas de la ruta glicolítica, responsable de metabolizar la glucosa en el testículo, están inactivadas en el delfín"

"Hemos descubierto que muchas de las enzimas de la ruta glicolítica, responsable de metabolizar la glucosa en el testículo, están inactivadas en el delfín. Esto se debe a que la vía que utilizan los espermatozoides para producir energía y moverse es la fosforilación oxidativa de lípidos", matiza el científico.

En el estudio han participado además investigadores del Centro de Investigaciones Marinas y Ambientales de la Universidad de Oporto, responsables de identificar las mutaciones en los genes glicolíticos. También ha colaborado la Facultad de Veterinaria de la Universidad Complutense de Madrid (UCM), y el Oceanogràfic de la Ciudad de las Artes y las Ciencias de Valencia, que aportó las muestras espermáticas de delfín.

Una adaptación que no se produce en las ballenas

Los cetáceos se dividen en dos grandes grupos, los odontocetos (cetáceos dentados) y los misticetos (ballenas barbadas). Mientras que los primeros poseen dientes, como los delfines y las orcas, los segundos tienen barbas para filtrar, tragar y expulsar el agua a través de las barbas. 

Esta adaptación no se ha producido en las ballenas
Esta adaptación no se ha producido en las ballenas. Foto: IStock.

Los investigadores han advertido que las mutaciones experimentadas por los delfines también se han observado en otras especies dentro del grupo de los odontocetos. “El cambio parece imprescindible para su adaptación al mar y a una dieta de proteínas y grasas. Sin embargo, la alimentación de las ballenas barbadas se basa en el kril, pequeños crustáceos marinos de diversas especies que forman parte del plancton y cuya composición es rica en un carbohidrato: la quitina.

 “Entender todo el proceso de adaptación espermática podría servir para aplicar estos conocimientos a biotecnologías reproductivas de las especies ganaderas y a los humanos”

“Aunque es difícil recoger esperma de estos animales y aún no sabemos mucho acerca de su metabolismo, en los misticetos no se han observado estas mutaciones en los genes glicolíticos”, señala Gutiérrez-Adán.

En la siguiente fase del estudio, los investigadores se centrarán en analizar la fuente energética y la estrategia que utilizan los delfines en el proceso de capacitación espermática. “Entender todo el proceso de adaptación espermática podría servir para aplicar estos conocimientos a biotecnologías reproductivas de las especies ganaderas y a los humanos”, concluye.

 

Relacionado

Los delfines del Ganges: no una, sino dos especies amenazadas

Unos 11.300 delfines fueron murieron entre 2018-19 sólo en el Golfo de Vizcaya. Foto: iStock

Relacionado

Llamada general contra la pesca accidental de delfines